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Classical results and motivation.

@ A CK function can be approximated from its Fourier partial
sum of length N with the error of order N%

@ For functions with singularities (e.g discontinuous
functions) the Fourier approximation method suffers from
slow convergence and oscillations near the discontinuity
point (Gibbs effect, over shoot etc).

@ Using the notion of Kolmogorov's n width it can be shown
that any approximation method with linear scheme can not
be better than the Fourier partial sum approximation.
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Classical results and motivation.

@ A CK function can be approximated from its Fourier partial
sum of length N with the error of order N%

@ For functions with singularities (e.g discontinuous
functions) the Fourier approximation method suffers from
slow convergence and oscillations near the discontinuity
point (Gibbs effect, over shoot etc).

@ Using the notion of Kolmogorov's n width it can be shown
that any approximation method with linear scheme can not
be better than the Fourier partial sum approximation.

@ To reconstruct non continuous signals from their Fourier
data we must consider a non linear approximation scheme.
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A simple example

Nonlinear reconstruction through linear measurements
Questions

Algebraic sampling

@ A-priori assumptions: "Simple” signals - Signals with a
known structure and few degrees of freedom (< n).

@ The Linear measurements should be of a given, known
analytic type (e.g: Fourier coefficients, moments, samples
of the signal - convolution against a known kernel, some
other integral form, etc)

@ Using the a - priori knowledge and the given
measurements we shall reconstruct the signal with ~ n
measurements (n is assumed to be small).
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A simple example

Nonlinear reconstruction through linear measurements
Questions

@ The signal

r
F(x) =Y Ad(Xx —x), n=2r
=1
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A simple example

Nonlinear reconstruction through linear measurements
Questions

@ The signal

r
F(x) =Y Ad(Xx —x), n=2r
=1

@ The measurements (moments)

uk(F):/xkF(x)dx
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A simple example

Nonlinear reconstruction through linear measurements
Questions

@ The signal

r
F(x) =Y Ad(Xx —x), n=2r
=1

@ The measurements (moments)

uk(F):/xkF(x)dx

@ The Prony system (the unknowns are the A;’s and the x;’s)

= po(F)

pa(F)

ArXZ + .+ AXE = pp(F)
o = = wae



A simple example

Questions

Nonlinear reconstruction through linear measurements

Dimension of the signal (n) = number of measurements
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Questions

A simple example

Nonlinear reconstruction through linear measurements

© Can the assumption that the signal has a known

“geometric” structure be justified in applications?

way?

@ Can the arising systems be solved in a robust and efficient

=} =y =) 12N e



A simple example

Nonlinear reconstruction through linear measurements
(One of) The ultimate test(s) - General images

Can the assumption that the signal has a known “geometric”
structure be justified in applications?

Image representation and compression via geometric models.
A very difficult problem in image precessing.
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General images

A simple example

Nonlinear reconstruction through linear measurements

For this lecture, images = Piecewise smooth functions on
[0,1] x [0,1] in R2.

Niv Sarig
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A simple example

Nonlinear reconstruction through linear measurements

way?

Can the arising systems be solved in a robust and efficient

The rest of the talk will give a partial answer to this question.
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The a-priori information
Reconstruction accuracy

Piecewise-smooth reconstruction: related work

@ [Gustafsson et al.(2000)Gustafsson, He, Milanfar, and Putinar]
@ [Vetterli et al.(2002)Vetterli, Marziliano, and Blu]

@ [Elad et al.(2004)Elad, Milanfar, and Golub]

@ [Maravic and Vetterli(2004)]

@ [Kvernadze(2004)]

@ [Dragotti et al.(2007)Dragotti, Vetterli, and Blu]

@ [Kisunko(2008)]

@ [Yomdin and Sarig(2008)]

@ [Yomdin et al.(2009)Yomdin, Batenkov, and Sarig]

@ [Batenkov(2009)]
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Reconstruction accuracy

Piecewise-smooth model: a-priori information

X1

. Xr
[Fjllck <M < o0,

X1 =D

’Xj+1—Xj’>(5>O
max \F(( x) —FY 05 =7 >0

[m]
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The a-priori information

Reconstruction accuracy

F can be reconstructed from N + n(k, r) Fourier coefficients
with the maximal error < & both in the positions of the
discontinuities and in the pointwise values of the smooth part,
where C = C(r, M, 4,7).
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The a-priori information

smooftvh part “simple” part
F= F_ + v
~—~ ~—~
€ck has n(k, r) degrees of freedom
fn(F) =fn(F)+f(V)
~——
measurement <%
=N
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The a-priori information

smooftvh part “simple” part
F= F_ + v
~—~ ~—~
€ck has n(k, r) degrees of freedom
fn(F) =fn(F)+f(V)
~—~— ~—~—
measurement <t

Nk
@ Fori > N solve the system

fi(w) =%(F)

with respect to W, the “simple” part of F, with error <

C
Nk~
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The a-priori information

smooftvh part “simple” part
F= F + v
€Cck
fn (F)

——

~—~
has n(k, r) degrees of freedom
= h(F) +n (V)
~——
measurement

< C

Nk
@ Fori > N solve the system

fi(w) =%(F)

with respect to W, the “simple” part of F, with error <

c
m.
@ Use fi(F),i <N to find F, the smooth part of F.
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The a-priori information

smooftvh part “simple” part
F= F + v
€Cck
fn (F)

——

~—~
has n(k, r) degrees of freedom
= h(F) +n (V)
~——
measurement

< C

Nk
@ Fori > N solve the system

fi(w) =%(F)

with respect to W, the “simple” part of F, with error <

c
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@ Use fi(F),i <N to find F, the smooth part of F.
@ Estimate the robustness. o s - Hac



The a-priori information

smooftvh part “simple” part
F= F_ + v
~—~ ~—~
€Ck has n(k, r) degrees of freedom
fn(F) =fn(F)+i(V)
SN—— SN——
measurement <£

NK
@ Fori > N solve the system

fi(w) = %(F)

with respect to W, the “simple” part of F, with error <

c
m.
@ Use fi(F),i <N to find F, the smooth part of F.
@ Estimate the robustness. 5w - ao



The a-priori information

Reconstruction accuracy: related work

@ [Eckhoff(1993)]

@ [Gottlieb and Shu(1996)]
@ [Gelb and Tadmor(2001)]
@ [Kvernadze(2004)]
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The a-priori information

smooftvh part “simple” part
F= F_ + v
~—~ ~—~
€Ck has n(k, r) degrees of freedom
fn(F) =fn(F)+i(V)
SN—— SN——
measurement <£

NK
@ Fori > N solve the system

fi(w) =fi(F)

with respect to W, the “simple” part of F, with error <

c
m.
@ Use fi(F),i <N to find F, the smooth part of F.
@ Estimate the robustness. 5w - ao



Model reconstruction from general measurements
The generating function for several cases

Reconstruction of a signal built from two functions
The simple example from the beginning of the talk
@ The signal

r
F(x) =Y Ad(Xx —x), n=2r.
=1

@ The measurements (moments)
uk(F):/xkF(x)dx
@ The Prony system
Ap+ ...+ A

= po(F)
AiXe+ ...+ AKX ,LL]_(F)

ArxZ L+ AXE =y (F)
o = = rYes



Model reconstruction from general measurements
The generating function for several cases
Reconstruction of a signal built from two functions

Solution of Prony system

@ Setting the moments generating function:
(z) = 2kZo i (F)Z".
0 1(z) = erzl 1f>j<jz is a rational function. Its poles and the
residues depend algebraically on the x;’s and the A;’s.

@ Using Padé approximation method we find the poles and

the residues of I(z) from 2r of its Taylor coefficients (Our
measurements).
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Solution of Prony system

The generating function for several cases

Reconstruction of a signal built from two functions
General measurements for model reconstruction

The Model:

F(x) =2 Af(x —%)  (F) = [ F(t)ec(t)dt
Given: f, o = {@k (1)}, look for ¢ = {9y }2, s.t
Yk (t) = Do<ick Cikpi(t) and [t +x)ik(t) = pk(X)

The 4 is called an “f-convolution dual” sequence of functions
(similar to a bi-orthogonal set of function) with respect to the
system .
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Solution of Prony system

The generating function for several cases
Reconstruction of a signal built from two functions

Let a sequence ¢ = {y(t)}>, be an f-convolution dual to ¢.
Define the generalized moments by My = > 5~ Cikui- Then
the parameters A; and x; in the model satisfy the following
system of equations (“generalized Prony system”):

)
D Aje(x) =M, k=0,1,....
j=1
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Solution of Prony system

Model reconstruction from general measurements

The generating function for several cases

Reconstruction of a signal built from two functions

Multi dimensional signal reconstruction
The model:

r
x) =) Af(x
j=1
The convolution dual to the monomials i (x) = x* are some
specific polynomials ) (x)
The generalized moments generating function

ZAJH

) , X € R

i
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Solution of Prony system

Model reconstruction from general measurements

Reconstruction of a signal built from two functions
The generating function for several cases

Adding the derivatives of the given function f
The model:

r s
= Z ZAij(I)(X + Xj).

j=1 1=0

We use the same polynomials ¢ (x) as in the previous case
The generalized moments generating function

0=y 3N (1) At

, Xi € R
1—Xx2z )q-',-l Je
j=1 1=0 q=0 J
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Solution of Prony system

Model reconstruction from general measurements
The generating function for several cases

Reconstruction of a signal built from two functions

The modified model:

F(x) =) af(
=1

;
X+%)+ > bg(x +Y)
-1

where f and g are two different given functions and the a’s,
bj’s, X;'s and the y;’s are the unknown parameters to be
reconstructed from finitely many linear measurements.
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Solution of Prony system

Assumptionon f and g :

Model reconstruction from general measurements
The generating function for several cases

There are infinitely many zeros of the Fourier transform f which
are not zeros of the Fourier transform § and vice versa.
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Solution of Prony system

Model reconstruction from general measurements
The generating function for several cases

Assumptionon f and g :

There are infinitely many zeros of the Fourier transform f which
are not zeros of the Fourier transform § and vice versa.

This gives us:

Generalized Prony system
;

where wy are some of the zeros of the Fourier transforms of f or

g. They are not necessarily integers (as in the usual Prony
system).
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Solution of Prony system
Model reconstruction from general measurements
The generating function for several cases

Assumptionon f and g :

There are infinitely many zeros of the Fourier transform f which
are not zeros of the Fourier transform § and vice versa.

This gives us:

Generalized Prony system
;

where wy are some of the zeros of the Fourier transforms of f or

g. They are not necessarily integers (as in the usual Prony
system).

Solvability of this system depends on the geometry of the
points wy. s & - = T Hao



Solution of Prony system
Example in dimension 1

Model reconstruction from general measurements
The generating function for several cases

f(x) = H—1,15(x)

g(x)=0(x+1)+d(x —1)
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Solution of Prony system
Model reconstruction from general measurements
The generating function for several cases

Example in dimension 1

@ f(x) = Hi_115(X), 9(x) = o(x +1) +d(x —1).

o f(w) = y/2(sinw)/w, G(w) = /2 cosw.

o z(f) = xZ/{0},Z(§) = ~(Z + 3),
Z(F) = 12(§)| = 00, 2(F) nZ(§) =0

@ The generalized Prony is actually a Prony system since the
geometry of the zeros is the geometry of Z.

) 7/{0
\/;( 1) Zaj (x)™)",n € Z/{0}

F ((l +n)m) r . _ 1
\/5(—1) =S BT N e @ +5)
w (%—&-n)w I=1
This example can be generalized to multidim. signals.
o F = =
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Solution of Prony system
Model reconstruction from general measurements
The generating function for several cases

Example in dimension 1

@ f(x) = Hi_115(X), 9(x) = o(x +1) +d(x —1).

o f(w) = y/2(sinw)/w, G(w) = /2 cosw.

o z(f) = xZ/{0},Z(§) = ~(Z + 3),
Z(F) = 12(§)| = 00, 2(F) nZ(§) =0

@ The generalized Prony is actually a Prony system since the
geometry of the zeros is the geometry of Z.

) 7/40
ﬁ( 1) ZaJ (x)™)",n € z/{0}

F ((l +n)m) r . _ 1
\/5(—1) =S BT N e @ +5)
w (%—&-n)w I=1
This example can be generalized to multidim. signals.
o F = =
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This is a joint work with

Yosef Yomdin
At the Weizmann institute of Science.
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Thank you for listening.
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