An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

Classical results and motivation.

- A C^k function can be approximated from its Fourier partial sum of length *N* with the error of order $\frac{C}{M^k}$.
- For functions with singularities (e.g discontinuous functions) the Fourier approximation method suffers from slow convergence and oscillations near the discontinuity point (Gibbs effect, over shoot etc).
- Using the notion of Kolmogorov's nth width it can be shown that any approximation method with linear scheme can not be better than the Fourier partial sum approximation.
- To reconstruct non continuous signals from their Fourier data we must consider a non linear approximation scheme.

a (~

Classical results and motivation.

- A C^k function can be approximated from its Fourier partial sum of length *N* with the error of order $\frac{C}{N^k}$.
- For functions with singularities (e.g discontinuous functions) the Fourier approximation method suffers from slow convergence and oscillations near the discontinuity point (Gibbs effect, over shoot etc).
- Using the notion of Kolmogorov's nth width it can be shown that any approximation method with linear scheme can not be better than the Fourier partial sum approximation.
- To reconstruct non continuous signals from their Fourier data we must consider a non linear approximation scheme.

90

Introduction Piecewise-smooth reconstruction Specific results

Algebraic sampling

Algebraic sampling:

- A-priori assumptions: "Simple" signals Signals with a known structure and few degrees of freedom (< n).
- The Linear measurements should be of a given, known analytic type (e.g: Fourier coefficients, moments, samples of the signal - convolution against a known kernel, some other integral form, etc)
- Using the a priori knowledge and the given measurements we shall reconstruct the signal with $\approx n$ measurements (n is assumed to be small).

P

A simple example Nonlinear reconstruction through linear measurements Questions

A simple example

The signal

$$F(x) = \sum_{j=1}^{r} A_j \delta(x - x_j), \ n = 2r$$

The measurements (moments)

$$\mu_k(F) = \int x^k F(x) dx$$

• The Prony system (the unknowns are the A_i 's and the x_i 's)

$$A_{1} + \ldots + A_{r} = \mu_{0}(F)$$

$$A_{1}x_{1} + \ldots + A_{r}x_{r} = \mu_{1}(F)$$

$$\vdots \qquad \vdots$$

$$A_{1}x_{1}^{2r} + \ldots + A_{r}x_{r}^{2r} = \mu_{2r}(F)$$

A simple example Nonlinear reconstruction through linear measurements Questions

A simple example

The signal

$$F(\mathbf{x}) = \sum_{j=1}^{r} A_j \delta(\mathbf{x} - \mathbf{x}_j), \ n = 2r$$

• The measurements (moments)

$$\mu_k(F) = \int x^k F(x) dx$$

• The Prony system (the unknowns are the A_i 's and the x_i 's)

$$A_{1} + \ldots + A_{r} = \mu_{0}(F)$$

$$A_{1}x_{1} + \ldots + A_{r}x_{r} = \mu_{1}(F)$$

$$\vdots \qquad \vdots$$

$$A_{1}x_{1}^{2r} + \ldots + A_{r}x_{r}^{2r} = \mu_{2r}(F)$$

A simple example Nonlinear reconstruction through linear measurements Questions

A simple example

The signal

$$F(\mathbf{x}) = \sum_{j=1}^{r} A_j \delta(\mathbf{x} - \mathbf{x}_j), \ n = 2r$$

• The measurements (moments)

$$\mu_k(F) = \int x^k F(x) dx$$

The Prony system (the unknowns are the A_j's and the x_j's)

$$A_{1} + \ldots + A_{r} = \mu_{0}(F)$$

$$A_{1}x_{1} + \ldots + A_{r}x_{r} = \mu_{1}(F)$$

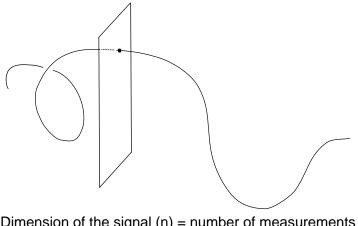
$$\vdots \qquad \vdots$$

$$A_{1}x_{1}^{2r} + \ldots + A_{r}x_{r}^{2r} = \mu_{2r}(F)$$

$$(\Box \in \mathbb{C} \times \mathbb{C$$

Introduction Piecewise-smooth reconstruction Specific results

Nonlinear reconstruction through linear measurements



< <p>I >

SQC.

A simple example Nonlinear reconstruction through linear measurements Questions

Questions

Can the assumption that the signal has a known "geometric" structure be justified in applications?

Can the arising systems be solved in a robust and efficient way?

SQC.

A simple example Nonlinear reconstruction through linear measurements Questions

(One of) The ultimate test(s) - General images

Question 1

Can the assumption that the signal has a known "geometric" structure be justified in applications?

Answer

Image representation and compression via geometric models. A very difficult problem in image precessing.

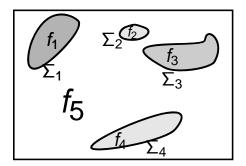
うくつ

< n

A simple example Nonlinear reconstruction through linear measurements Questions

General images

For this lecture, images = Piecewise smooth functions on $[0,1] \times [0,1]$ in \mathbb{R}^2 .



ሞ

< <p>I >

nac

A simple example Nonlinear reconstruction through linear measurements Questions

Question 2

Can the arising systems be solved in a robust and efficient way?

The rest of the talk will give a partial answer to this question.

< <p>—

The a-priori information Reconstruction accuracy

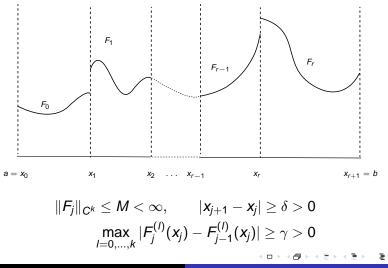
Piecewise-smooth reconstruction: related work

- [Gustafsson et al.(2000)Gustafsson, He, Milanfar, and Putinar]
- [Vetterli et al.(2002)Vetterli, Marziliano, and Blu]
- [Elad et al.(2004)Elad, Milanfar, and Golub]
- [Maravic and Vetterli(2004)]
- [Kvernadze(2004)]
- [Dragotti et al.(2007)Dragotti, Vetterli, and Blu]
- [Kisunko(2008)]
- [Yomdin and Sarig(2008)]
- [Yomdin et al.(2009)Yomdin, Batenkov, and Sarig]
- [Batenkov(2009)]

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

The a-priori information Reconstruction accuracy

Piecewise-smooth model: a-priori information



The a-priori information Reconstruction accuracy

Reconstruction accuracy

theorem

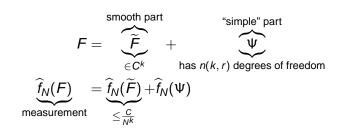
F can be reconstructed from N + n(k, r) Fourier coefficients with the maximal error $\leq \frac{C}{N^k}$ both in the positions of the discontinuities and in the pointwise values of the smooth part, where $C = C(r, M, \delta, \gamma)$.

うくつ

< n

The a-priori information Reconstruction accuracy

Proof:



• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

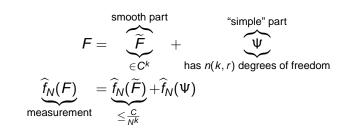
with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{N^k}$.

- Use $\hat{f}_i(F)$, $i \leq N$ to find \tilde{F} , the smooth part of F.
- Estimate the robustness.

< <p>Image: 1

The a-priori information Reconstruction accuracy

Proof:



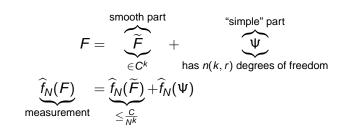
• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{N^k}$. • Use $\hat{f}_i(F), i \leq N$ to find \tilde{F} , the smooth part of F. • Estimate the robustness.

The a-priori information Reconstruction accuracy

Proof:



• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

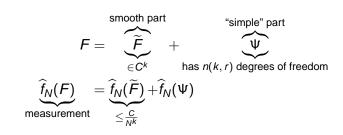
with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{N^k}$.

• Use $\hat{f}_i(F)$, $i \leq N$ to find \tilde{F} , the smooth part of F.

Estimate the robustness.

The a-priori information Reconstruction accuracy

Proof:



• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

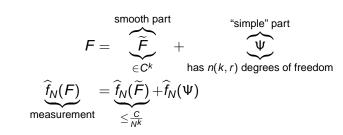
with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{N^k}$.

- Use $\hat{f}_i(F)$, $i \leq N$ to find \tilde{F} , the smooth part of F.
- Estimate the robustness.

The a-priori information Reconstruction accuracy

Proof:

٠



• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{M^k}$.

- Use $\hat{f}_i(F)$, $i \leq N$ to find \tilde{F} , the smooth part of F.
- Estimate the robustness.

The a-priori information Reconstruction accuracy

Reconstruction accuracy: related work

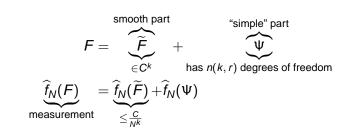
- [Eckhoff(1993)]
- [Gottlieb and Shu(1996)]
- [Gelb and Tadmor(2001)]
- [Kvernadze(2004)]

< □

The a-priori information Reconstruction accuracy

Proof:

٠



• For $i \ge N$ solve the system

$$\widehat{f}_i(\Psi) = \widehat{f}_i(F)$$

with respect to Ψ , the "simple" part of F, with error $\leq \frac{C}{N^k}$.

- Use $\hat{f}_i(F)$, $i \leq N$ to find \tilde{F} , the smooth part of F.
- Estimate the robustness.

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

The simple example from the beginning of the talk

• The signal

$$F(\mathbf{x}) = \sum_{j=1}^{r} A_j \delta(\mathbf{x} - \mathbf{x}_j), \ n = 2r.$$

• The measurements (moments)

$$\mu_k(F) = \int x^k F(x) dx$$

The Prony system

$$A_1 + \ldots + A_r = \mu_0(F)$$

$$A_1 x_1 + \ldots + A_r x_r = \mu_1(F)$$

$$\vdots \qquad \vdots$$

$$A_1 x_1^{2r} + \ldots + A_r x_r^{2r} = \mu_{2r}(F)$$

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Solution of Prony system

• Setting the moments generating function:

$$I(z) = \sum_{k=0}^{\infty} \mu_k(F) z^k.$$

- $I(z) = \sum_{j=1}^{r} \frac{A_j}{1-x_j z}$ is a rational function. Its poles and the residues depend algebraically on the x_j 's and the A_j 's.
- Using Padé approximation method we find the poles and the residues of *I*(*z*) from 2*r* of its Taylor coefficients (Our measurements).

500

Introduction Solution of P Algebraic sampling Model recome Piecewise-smooth reconstruction Specific results Reconstruction

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

General measurements for model reconstruction

The Model:

$$F(\mathbf{x}) = \sum_{j=1}^{r} A_j f(\mathbf{x} - \mathbf{x}_j)$$
 $\mu_k(F) = \int F(t) \varphi_k(t) dt$

Given: $f, \varphi = \{\varphi_k(t)\}_{k=0}^{\infty}$, look for $\psi = \{\psi_k\}_{k=0}^{\infty}$ s.t

 $\psi_k(t) = \sum_{0 \le i \le k} C_{i,k} \varphi_i(t)$ and $\int f(t+x) \psi_k(t) = \varphi_k(x)$

The ψ is called an "*f*-convolution dual" sequence of functions (similar to a bi-orthogonal set of function) with respect to the system φ .

P

Sac

< □ ▶

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Theorem

Let a sequence $\psi = \{\psi_k(t)\}_{k=0}^{\infty}$ be an *f*-convolution dual to φ . Define the generalized moments by $M_k = \sum_{0 \le i \le k} C_{i,k}\mu_i$. Then the parameters A_j and x_j in the model satisfy the following system of equations ("generalized Prony system"):

$$\sum_{j=1}^r A_j \varphi_k(x_j) = M_k, \ k = 0, 1, \ldots$$

P

うくつ

< <p>I >

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

The generating function for several cases

Multi dimensional signal reconstruction.

The model:

$$F(\mathbf{x}) = \sum_{j=1}^r A_j f(\mathbf{x} - \mathbf{x}_j).$$

The convolution dual to the monomials $\varphi_k(x) = x^k$ are some specific polynomials $\psi_k(x)$.

The generalized moments generating function:

$$I(z) = \sum_{j=1}^{r} A_j \prod_{l=1}^{d} \frac{1}{1 - (x_j)_l z_l}, x_j \in \mathbb{R}^{d}$$

< <p>I >

ma Cr

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

The generating function for several cases

Adding the derivatives of the given function f

The model:

$$F(x) = \sum_{j=1}^{r} \sum_{l=0}^{s} A_{j,l} f^{(l)}(x + x_j).$$

We use the same polynomials $\psi_k(x)$ as in the previous case. The generalized moments generating function :

$$I(z) = \sum_{j=1}^{r} \sum_{l=0}^{s} \sum_{q=0}^{l} \binom{l}{q} \frac{(-1)^{q+l} A_{j,l} / (x_j)^{l}}{(1-x_j z)^{q+1}}, \ x_j \in \mathbb{R}$$

< n

500

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Reconstruction of a signal built from two functions

The modified model:

$$F(\mathbf{x}) = \sum_{j=1}^r a_j f(\mathbf{x} + \mathbf{x}_j) + \sum_{j=1}^r b_j g(\mathbf{x} + \mathbf{y}_j)$$

where *f* and *g* are two different given functions and the a_j 's, b_j 's, x_j 's and the y_j 's are the unknown parameters to be reconstructed from finitely many linear measurements.

 $\circ \circ \circ$

< <p>I >

 Introduction
 Solution of Prony system

 Algebraic sampling
 Model reconstruction from general measurements

 Piecewise-smooth reconstruction
 The generating function for several cases

 Specific results
 Reconstruction of a signal built from two functions

Assumption on f and g:

There are infinitely many zeros of the Fourier transform \hat{f} which are not zeros of the Fourier transform \hat{g} and vice versa.

This gives us:

Generalized Prony system

$$\gamma_k = \sum_{j=1}^r a_j(x_j)^{\omega_k}$$

where ω_k are some of the zeros of the Fourier transforms of f or g. They are not necessarily integers (as in the usual Prony system).

Solvability of this system depends on the geometry of the points ω_k .

a (~

 Introduction
 Solution of Prony system

 Algebraic sampling
 Model reconstruction from general measurements

 Piecewise-smooth reconstruction
 The generating function for several cases

 Specific results
 Reconstruction of a signal built from two functions

Assumption on f and g:

There are infinitely many zeros of the Fourier transform \hat{f} which are not zeros of the Fourier transform \hat{g} and vice versa.

This gives us:

Generalized Prony system

$$\gamma_k = \sum_{j=1}^r a_j(x_j)^{\omega_k}$$

where ω_k are some of the zeros of the Fourier transforms of *f* or *g*. They are not necessarily integers (as in the usual Prony system).

Solvability of this system depends on the geometry of the points ω_k .

QQ

 Introduction
 Solution of Prony system

 Algebraic sampling
 Model reconstruction from general measurements

 Piecewise-smooth reconstruction
 The generating function for several cases

 Specific results
 Reconstruction of a signal built from two functions

Assumption on f and g:

There are infinitely many zeros of the Fourier transform \hat{f} which are not zeros of the Fourier transform \hat{g} and vice versa.

This gives us:

Generalized Prony system

$$\gamma_k = \sum_{j=1}^r a_j(x_j)^{\omega_k}$$

where ω_k are some of the zeros of the Fourier transforms of *f* or *g*. They are not necessarily integers (as in the usual Prony system).

Solvability of this system depends on the geometry of the points ω_k .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Example in dimension 1

$$f(x) = H_{[-1,1]}(x)$$

$$g(x) = \delta(x+1) + \delta(x-1)$$

Niv Sarig An "algebraic" reconstruction of piecewise-smooth functions from

P

< <p>I >

nac

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Example in dimension 1

•
$$f(x) = H_{[-1,1]}(x), \ g(x) = \delta(x+1) + \delta(x-1).$$

• $\hat{f}(\omega) = \sqrt{\frac{2}{\pi}} (\sin \omega) / \omega, \ \hat{g}(\omega) = \sqrt{\frac{2}{\pi}} \cos \omega.$
• $Z(\hat{f}) = \pi \mathbb{Z} / \{0\}, Z(\hat{g}) = \pi (\mathbb{Z} + \frac{1}{2}), |Z(\hat{f})| = |Z(\hat{g})| = \infty, Z(\hat{f}) \cap Z(\hat{g}) = \emptyset.$

• The generalized Prony is actually a Prony system since the geometry of the zeros is the geometry of Z.

$$\frac{\hat{F}(\pi n)}{\sqrt{\frac{2}{\pi}}(-1)^n} = \sum_{j=1}^r a_j((x_j)^{\pi})^n, n \in \mathbb{Z}/\{0\}$$

$$\frac{\hat{F}((\frac{1}{2}+n)\pi)}{\sqrt{\frac{2}{\pi}\frac{(-1)^{n+1}}{(\frac{1}{2}+n)\pi}}} = \sum_{l=1}^{r} (b_l(y_l)^{\frac{\pi}{2}})((y_l)^{\pi})^n , n \in (\mathbb{Z}+\frac{1}{2})$$

This example can be generalized to multidim. signals.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Solution of Prony system Model reconstruction from general measurements The generating function for several cases Reconstruction of a signal built from two functions

Example in dimension 1

•
$$f(x) = H_{[-1,1]}(x), \ g(x) = \delta(x+1) + \delta(x-1).$$

• $\hat{f}(\omega) = \sqrt{\frac{2}{\pi}}(\sin \omega)/\omega, \ \hat{g}(\omega) = \sqrt{\frac{2}{\pi}}\cos \omega.$
• $Z(\hat{f}) = \pi \mathbb{Z}/\{0\}, Z(\hat{g}) = \pi(\mathbb{Z} + \frac{1}{2}),$
 $|Z(\hat{f})| = |Z(\hat{g})| = \infty, Z(\hat{f}) \cap Z(\hat{g}) = \emptyset.$

• The generalized Prony is actually a Prony system since the geometry of the zeros is the geometry of Z.

$$\frac{\hat{F}(\pi n)}{\sqrt{\frac{2}{\pi}}(-1)^n} = \sum_{j=1}^r a_j((x_j)^{\pi})^n, n \in \mathbb{Z}/\{0\}$$

$$\frac{\hat{F}((\frac{1}{2}+n)\pi)}{\sqrt{\frac{2}{\pi}\frac{(-1)^{n+1}}{(\frac{1}{2}+n)\pi}}} = \sum_{l=1}^{r} (b_l(y_l)^{\frac{\pi}{2}})((y_l)^{\pi})^n , n \in (\mathbb{Z}+\frac{1}{2})$$

This example can be generalized to multidim. signals.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

This is a joint work with

At the Weizmann institute of Science.

P

< <p>I >

nac

=

Thank you for listening.

r 🖓 🕨

문어 세 문어

< □ >

5990

∍

An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

An "algebraic" reconstruction of piecewise-smooth functions from integral measurements

Niv Sarig

Weizmann Institute of Science Department of Mathematics Rehovot, Israel

The 11th Israeli Mini-Workshop in Applied and Computational Mathematics July 2009 Technion.

< <p>Image: 1

D. Batenkov.

Moment inversion problem for piecewise d-finite functions. In Arxiv preprint arXiv:0901.4665, 2009.

Submitted to Inverse Problems.

P.L. Dragotti, M. Vetterli, and T. Blu.

Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon meets Strang-Fix. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 55(5):1741, 2007.

Knut S. Eckhoff.

Accurate and efficient reconstruction of discontinuous functions from truncated series expansions. Mathematics of Computation, 61(204):745–763, 1993. ISSN 00255718. URL http://www.jstor.org/stable/2153251.

M. Elad, P. Milanfar, and GH Golub.

Shape from moments-an estimation theory perspective. IEEE Transactions on Signal Processing, 52(7):1814–1829, 2004.

A. Gelb and E. Tadmor.

Detection of edges in spectral data II. Nonlinear enhancement. SIAM Journal on Numerical Analysis, pages 1389–1408, 2001.

D. Gottlieb and C.W. Shu.

On the Gibbs phenomenon III: recovering exponential accuracy in a sub-interval from a spectral partial sum of a piecewise analytic function.

SIAM Journal on Numerical Analysis, pages 280-290, 1996.

Reconstructing planar domains from their moments.

Sac

INVERSE PROBLEMS, 16(4):1053-1070, 2000.

V. Kisunko.

Cauchy Type Integrals and a D-moment Problem.

Mathematical Reports of the Academy of Science of the Royal Society of Canada, 29(4), 2008.

G. Kvernadze.

Approximating the jump discontinuities of a function by its Fourier-Jacobi coefficients. MATHEMATICS OF COMPUTATION, pages 731–752, 2004.

I. Maravic and M. Vetterli.

Exact sampling results for some classes of parametric nonbandlimited 2-D signals. *IEEE Transactions on Signal Processing*, 52(1):175–189, 2004.

M. Vetterli, P. Marziliano, and T. Blu.

Sampling signals with finite rate of innovation. Signal Processing, IEEE Transactions on, 50(6):1417–1428, 2002.

Y. Yomdin, D. Batenkov, and N. Sarig.

An "algebraic" reconstruction of piecewise-smooth functions. In Sampta09, 2009.

Y. Yomdin and N. Sarig.

Reconstruction of non-linear models. Journal of Geometric Analysis, 2008.

< □ > < 同 > < 三 >